
Using Queue Time Predictions for Processor Allocation

Allen B. Downey

Report No. UCB/CSD-97-929

January 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Using Queue Time Predictions for Processor Allocation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
When a malleable job is submitted to a space-sharing parallel computer, it must choose often whether to
begin execution on a small, available cluster, or wait in queue for more processors to become available. To
make this decision, it must predict how long it will have to wait for the larger cluster. We propose
statistical techniques for predicting these queue times, and develop an allocation strategy that uses these
predictions. We present a workload model based on the environment we have observed at the San Diego
Supercomputer Center, and use this model to drive simulations of various allocation strategies. We
conclude that prediction-based allocation not only improves the average turnaround time for the jobs; it
also improves the utilization of the system as a whole.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Using Queue Time Predictions for Processor Allocation

Allen B. Downey �

January 1997

Abstract

When a malleable job is submitted to a space-sharing parallel computer, it must choose

often whether to begin execution on a small, available cluster, or wait in queue for more

processors to become available. To make this decision, it must predict how long it will have

to wait for the larger cluster. We propose statistical techniques for predicting these queue

times, and develop an allocation strategy that uses these predictions. We present a workload

model based on the environment we have observed at the San Diego Supercomputer Center,

and use this model to drive simulations of various allocation strategies. We conclude that

prediction-based allocation not only improves the average turnaround time for the jobs; it

also improves the utilization of the system as a whole.

Keywords: parallel, space-sharing, partitioning, scheduling, allocation, malleable, multipro-

cessor, prediction, queue.

1 Introduction

Like many shared resources, parallel computers are susceptible to a tragedy of the commons |
individuals acting in their own interests tend to overuse and degrade the resource. Speci�cally,
users trying to minimize runtimes for their jobs might allocate more processors than they can use
e�ciently. This overindulgence lowers the e�ective use of the system and increases the queue times
of all users' jobs.

A partial solution to this problem is a programming model that supports malleable jobs, i.e.,
jobs that can be con�gured to run on clusters of various sizes. In existing systems, these jobs
cannot change their cluster sizes dynamically; that is, once they begin execution, they cannot add
or yield processors.

Malleable jobs improve system utilization by using fewer processors when system load is high,
thereby running more e�ciently and increasing the number of jobs in the system simultaneously.
But malleable jobs are not a su�cient solution to the tragedy of the commons, because users have
no direct incentive to restrict the cluster sizes of their jobs. Furthermore, even altruistic users
might not have the information they need to make the best decisions.

One solution to this problem is a system-centric scheduler that chooses cluster sizes automat-
ically, trying to optimize (usually heuristically) a system-wide performance metric like utilization

�EECS| ComputerScienceDivision, University of California, Berkeley, CA 94720 and San Diego Supercomputer
Center, P.O. Box 85608, San Diego, CA 92186. Supported by NSF grant ASC-89-02825 and by Advanced Research

Projects Agency/ITO, Distributed Object Computation Testbed, ARPA order No. D570, Issued by ESC/ENS
under contract #F19628-96-C-0020. email: downey@sdsc.edu, http://www.sdsc.edu/� downey

1

or average turnaround time. The problem is that such systems often force users to accept decisions
that are good for the system as a whole, but contrary to their immediate interests. For example,
if there is a job in queue and one idle processor, a utilization-maximizing system might require the
job to run, whereas the job might obtain a shorter turnaround time by waiting for more processors.

If such strategies are implemented, there are two possible outcomes: at best, users will be
unsatis�ed with the system; at worst, they will take steps to subvert it. Since these systems often
rely on application information provided by users, it is not hard for a disgruntled user to manipulate
the system for his own bene�t. In anecdotal reports from supercomputer centers, this sort of user
behavior is common, and not restricted to malevolent users; rather, it is an understanding in these
environments that users will take advantage of loopholes in system policies.

Given that this is true, an important property for a scheduling strategy is robustness in the
presence of self-interested users. As we will show in Section 5, many commonly-proposed allocation
strategies do not have this property; their overall performance degrades severely if users try, naively,
to improve the performance of individual jobs.

Thus our goal is to �nd a scheduling strategy that does not make decisions that are contrary
to the interests of the users. We propose an application-centric scheduler that uses application
information (run times on various cluster sizes) and system state (predicted queue times) to choose
the cluster size with the shortest expected turnaround time for each job.

This strategy optimizes the performance of individual jobs, so users have no incentive to subvert
its decisions. The question, though, is what e�ect these local optimizations will have on the
performance of the system as a whole. Using simulations based on a stochastic workload model,
we show that the performance of one such strategy exceeds that of the best system-centric scheduler,
improving both system utilization and average turnaround time.

1.1 Queueing strategy

A scheduling strategy consists of a queueing strategy, which chooses which job in queue begins
execution, and an allocation strategy, which chooses how many processors are allocated to each
job.

In this paper, we will be using only �rst-come-�rst-served (FCFS) queueing strategies. Thus,
once a job arrives at the head of the queue, its remaining queue time does not depend on the other
jobs in queue or on future arrivals. Furthermore, if the job at the head of the queue decides to
hold out | to leave processors idle until a larger cluster is available | the other jobs in queue are
not permitted to pass it by.

In real systems, there are often several queues with di�erent priorities. The queueing strategy
within each queue is FCFS, but jobs in di�erent queues do not necessarily run in the order they
arrive. The techniques we present here can be extended to model this environment, although we
expect it to be more di�cult to predict the behavior of low-priority queues, since they are a�ected
by higher-priority arrivals.

Some prior studies have proposed more general non-FCFS queueing strategies [11][4]. These
strategies have the potential to reduce turnaround times by identifying short jobs (one way or
another) and giving them priority. Furthermore, a non-FCFS strategy would discourage jobs from
holding out for more processors, since a stubborn job would risk starvation. Thus the immediate
e�ect might be to reduce the number of idle processors. Despite these advantages, it is not clear
that non-FCFS strategies will improve system performance. If jobs in queue are forced to compete
for idle processors, we expect the result to be similar to the ASP strategy we examined in [5], in
which idle processors are divided evenly among the jobs in queue. In that study, we found that

2

ASP was signi�cantly worse than the FCFS strategies. FCFS strategies have one other advantage,
which is that they are more predictable. This property has a direct impact on user satisfaction, and
also lends itself to metacomputing environments in which users (or system agents) select among
various resources according to the predicted time until they are available (among other things).

Thus, although we consider non-FCFS queueing strategies an interesting area for further ex-
ploration, we have not included them in this study.

1.2 Related work

In most existing systems, users choose cluster sizes for their jobs by hand, and the system does not
have the option of allocating more or fewer than the requested number of processors. Thus, there
have been no reports yet on the e�ectiveness of adaptive allocation strategies in real systems.

Many simulation and analytic studies have examined the performance of system-centric allo-
cation strategies; i.e., strategies designed to maximize an aggregate performance metric, without
regard for individual jobs. In most cases, this metric is average turnaround time [12] [21] [19] [20]
[11] [13] [4] [18], although some studies also consider throughput [16]. Rosti, Smirni et al. [17]
[22] use power, which is the ratio of throughput to mean response time. In [6] we used a parallel
extension of slowdown, which is the ratio of the actual response time of a job to the time it would
have taken on a dedicated machine.

Recently, there has been interest in application-centric scheduling, in which individual jobs
select resources in order to minimize their own run times, without regard for the performance of
the system as a whole. The AppLeS project at the University of California at San Diego [2][3] and
the MARS project at the Paderborn Center for Parallel Computing [10] are applying this approach
in a wide-area, heterogeneous environment.

Atallah et al. [1] have proposed system agents that choose cluster sizes (and speci�c sets of
hosts) to minimize the turnaround time of individual applications. Since their target system is
a timesharing network of workstations, they consider the problem of contention with other jobs
in the system, but they do not have the problem of predicting the time until a cluster becomes
available.

1.3 Outline

Section 2 describes an abstract workload model we have derived from observations at the San Diego
Supercomputer Center. Section 3 describes the statistical techniques we use to predict queue times.
Section 4 describes the simulator we use to evaluate various allocation strategies. Section 5 presents
our evaluation of these strategies from the application's point of view, and Section 6 discusses the
e�ect these strategies have on the system as a whole.

2 Workload model

In order to evaluate the proposed allocation strategies, we will use a simulation based on an
abstract workload model. On existing systems, we often collect statistics about actual (concrete)
workloads; for example, we might know the duration and cluster size of each job. These measured
workloads depend on the characteristics of the job mix, the properties of the system hardware, and
the behavior of the allocation strategy. Thus, it may not be correct to use a concrete workload
from one system to simulate, and evaluate, another. Our goal is to create an abstract workload
that separates the e�ect of the job mix from the e�ect of the system.

3

In [5] we propose a model of malleable jobs that characterizes each job by three parameters:
L, the sequential lifetime of the job, A, the average parallelism, and �, which measures the job's
variance in parallelism. Using this model we can calculate the speedup and run time of a job on a
any number of processors. Section 2.1 summarizes this application model.

Once we have a model of individual applications, we can construct a workload model that
describes the system load, the arrival process, and the distribution of application parameters. In
[6] we presented observations of scienti�c workloads on the Intel Paragon at SDSC and the IBM
SP2 at CTC. We summarize those observations in Section 2.2, and use them to derive our abstract
workload model.

2.1 A model of malleable jobs

Our model of parallel speedup is based on a family of curves that are parameterized by a job's
average parallelism, A, and its variance in parallelism, V . To do this, we construct a hypothetical
parallelism pro�le1 with the desired values of A and V , and then use this pro�le to derive speedups.
We use two families of pro�les, one for programs with low V , the other for programs with high V .
In [5] we show that this family of speedup pro�les captures, at least approximately, the behavior
of a variety of parallel scienti�c applications on a variety of architectures.

2.1.1 Low variance model

Figure 1a shows a hypothetical parallelism pro�le for an application with low variance in paral-
lelism. The potential parallelism is A for all but some fraction � of the duration (0 � � � 1). The
remaining time is divided between a sequential component and a high-parallelism component. The
average parallelism of this pro�le is A; the variance of parallelism is V = �(A� 1)2.

A program with this pro�le would have the following speedup as a function of the cluster size
n:

S(n) =

8>>><
>>>:

An
A+�(n�1)=2

1 � n � A

An
�(A�1=2)+n(1��=2)

A � n � 2A� 1

A n � 2A� 1

(1)

2.1.2 High variance model

Figure 1b shows a hypothetical parallelism pro�le for an application with high variance in paral-
lelism. This pro�le has a sequential component of duration � and a parallel component of duration
1 and potential parallelism A+A� � �. By design, the average parallelism is A; by good fortune,
the variance of parallelism is �(A�1)2, the same as that of the low-variance model. Thus for both
models � is approximately the square of the coe�cient of variation, CV 2. This approximation
follows from the de�nition of coe�cient of variation, CV =

p
V =A. Thus, CV 2 is �(A � 1)2=A2,

which for large A is approximately �.
A program with this pro�le would have the following speedup as a function of cluster size:

S(n) =

8<
:

nA(�+1)

A+A���+n�
1 � n � A+ A� � �

A n � A+ A� � �
(2)

1The parallelism pro�le is the distribution of potential parallelism during the execution of a program[21].

4

a) Low-variance model

σ
2

σ
2

Low
variance
model

1

A

2A-1

σ1 -

Time

Hypothetical parallelism profile

D
eg

re
e

of
 p

ar
al

le
lis

m

b) High-variance model

σ

High
variance
model

A

1

1

Time

Hypothetical parallelism profile

σA+A -

D
eg

re
e

of
 p

ar
al

le
lis

m

σ

Figure 1: The hypothetical parallelism pro�les we use to derive our speedup model.

5

0 32 64 96 128 160
0

16

32

48

64

80

Number of processors

S
pe

ed
up

Speedup models

sigma

(low var)

0.0

0.5

1.0

sigma

(high var)

1.0

2.0

inf

Figure 2: Speedup curves for a range of values of �.

Figure 2 shows a set of speedup curves for a range of values of � (and A = 64). When � = 0 the
curve matches the theoretical upper bound for speedup|bound at �rst by the \hardware limit"
(linear speedup) and then by the \software limit" (the average parallelism A). As � approaches
in�nity, the curve approaches the theoretical lower bound on speedup derived by Eager et al. [8]:

Smin(n) = An=(A + n� 1) (3)

When � = 1 the two models (high and low variance) are identical.

2.2 Distribution of parameters

With the speedup model in the previous section, we can use L, A, and � to calculate the run time of
a job on any number of processors: The speedup on n processors is S(n;A; �); the run time is L=S.
Of course, for many jobs there will be ranges of n where this model is inapplicable. For example,
a job with large memory requirements will run poorly (or not at all) when n is small. Also, when
n is large, speedup may decrease as communication overhead overwhelms computational speedup.
Thus we qualify our application model with the understanding that for each application there may
be a limited range of viable cluster sizes.

2.2.1 Lifetimes

Ideally, we would like to know the distribution of L, the sequential lifetime, for a real workload.
But the accounting data we have from real systems does not contain sequential lifetimes; since
most jobs run on more than one processor, we do not know what their sequential lifetimes would
be. Furthermore, sequential lifetime is not always de�ned, since many jobs cannot run on a single
processor because of memory requirements. Thus, L is really an abstract measurement of the total
work a job does, rather than a literal measurement of its run time on one processor.

The accounting data we do have is the total allocated time, T , which is the product of wall clock
lifetime and cluster size. For programs with linear speedup, T equals L, but for programs with
sublinear speedups, T can be much larger than L. Nevertheless, we assume that the distributions

6

Distribution of total allocated time
(fraction of jobs with T < t)

t (sec−PEs)

0

0.2

0.4

0.6

0.8

1.0

1s 10s 100s 1h 10h 100h 1Kh

Paragon at SDSC

24907 jobs

mean = 353,000 s

median = 5340 s

Figure 3: Distribution of total allocated time (wall clock time multiplied by number of processors)
for 24907 batch jobs from the Intel Paragon at the San Diego Supercomputer Center (SDSC). The
gray line shows the model used to summarize the distribution.

of L and T have the same shape, but di�erent parameters. In our simulations, this is true: the
distribution of L (which is an input to the simulator) and the distribution of T (which depends on
the application characteristics and scheduling policy) have the same shape, although the values of
T are higher due to non-linear speedups.

This result allows us to use observed distributions of T to construct the distribution of L for
our workload. We have examined accounting logs from the Intel Paragon at the San Diego Super-
computer Center (SDSC); Figure 3 shows the distribution of total allocated time for 24907 jobs
that ran on this machine during a nine-month perion in 1995. The distribution is approximately
linear in log space, which implies that the cumulative distribution function (cdf) has the form:

cdfT (t) = PrfT � tg = �0 + �1 ln t tmin � t � tmax (4)

where �0 and �1 are the intercept and slope of the observed line. The upper and lower bounds of
this distribution are tmin = e��0=�1 and tmax = e(1:0��0)=�1 .

Since this distribution is uniform in log space, we call it a uniform-log distribution. We know
of no theoretical reason that the distribution should have this shape, but we believe that it is
pervasive among batch workloads, since we have observed similar distributions on the IBM SP2 at
the Cornell Theory Center and the Cray C90 at SDSC, and other authors have reported similar
distributions on other systems [9][23].

Since T overestimates the sequential lifetimes of jobs, our workload model uses a distribution
of L with a somewhat lower maximum than the distributions we observed. In our simulations, L is
chosen from a uniform-log distribution with minimum e2 and maximum e12 seconds. The median
of this distribution is 18 minutes; the mean is 271 minutes.

7

Distribution of cluster sizes
(fraction of jobs with cluster size < n)

Number of processors (n)

0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128 256

Figure 4: Distribution of cluster sizes for the workload from SDSC. The gray line is the distribution
we used for our workload model.

2.2.2 Average parallelism

For our workload model, we would like to know the parallelism pro�le of the jobs in the workload.
But the parallelism pro�le reects potential parallelism, as if there were an unbounded number of
processors available, and in general it is not possible to derive this information by observing the
execution of the program.

In the accounting data we have from SDSC, we do not have information about the average
parallelism of jobs. On the other hand, we do know the cluster size the user chose for each job, and
we hypothesize that these cluster sizes, in the aggregate, reect the parallelism of the workload.

Figure 4 shows the distribution of cluster sizes for the workload from SDSC. Almost all jobs
have cluster sizes that are powers of two. The Paragon does not require power-of-two cluster sizes,
but the interface to the queueing system suggests powers of two and few users have any incentive
to resist the combination of suggestion and habit. We hypothesize that the step-wise pattern in
the distribution of cluster sizes reects this habit and not the true distribution of A.

Thus for our workload model, the distribution of A is uniform-log with parameters min = 1 and
max = 128. The gray line in Figure 4 shows this distribution. At present observed distributions
contains more sequential jobs than our model, but this surplus is disappearing as the workload
matures. In the �rst two months of 1996, the fraction of sequential jobs at SDSC was 21%, down
from over 40% a year prior. Thus more recent workloads match our model well.

2.2.3 Variance in parallelism

In general there is no way to measure the variance in potential parallelism of existing codes ex-
plicitly. In [5] we propose a way to infer this value from observed speedup curves. To test this
technique, we collected speedup curves reported for a variety of scienti�c applications running on a

8

variety of parallel computers. We found that the parameter �, which approximates the coe�cient
of variance of parallelism, was typically in the range 0{2, with occasional higher values.

Although these observations provide a range of values for �, they do not tell us its distribution
in a real workload. For this study, we use a uniform distribution between 0 and 2.

3 Predicting queue times

In [7] we present statistical techniques for predicting the remaining queue time for a job at the
head of the queue. We summarize these techniques here.

We describe the state of the machine at the time of an arrival as follows: there are p jobs
running, with ages ai and cluster sizes ni (in other words, the ith job has been running on ni
processors for ai seconds). We would like to predict Q(n0), the time until n0 additional processors
become available, where n0 = n � nfree and nfree is the number of processors already available.
In the next two sections we present ways to estimate the median and mean of Q(n0).

3.1 Predictor A: median

We can calculate the median of Q(n0) exactly by enumerating all possible outcomes (which jobs
complete and which are still running), and calculating the probability that the request will be
satis�ed before a given time t. Then we set this probability equal to 0:5 and solve for the median
queue time. This approach is not feasible when there are many jobs in the system, but it leads
to an approximation that is fast to compute and that turns out to be su�ciently accurate for our
intended purposes.

We represent each outcome by a bit vector, b, where for each bit, bi = 0 indicates that the ith
job is still running, and bi = 1 indicates that the ith job has completed before time t. Since we
assume independence between jobs in the system, the probability of a given outcome is the product
of the probabilities of each event (the completion or non-completion of a job). The probability of
each event comes from the conditional distribution of lifetimes. For a uniform-log distribution of
lifetimes, the conditional distribution cdfLja is

1� cdfLja = PrfL > tjL > ag

=
1� cdfL(t)

1� cdfL(a)

=
1� �0 � �1 ln t

1� �0 � �1 lna

tmin � a � t � tmax (5)

and so the probability of a given event is

Prfbg =
Y

ijbi=0

cdfLjai(t) �
Y

ijbi=1

�
1� cdfLjai(t)

�
(6)

For a given outcome, the number of free processors is the sum of the processors freed by each
job that completes:

F (b) =
X
i

bi � ni (7)

9

Thus at time t, the probability that the number of free processors is at least the requested
cluster size is the sum of the probabilities of all the outcomes that satisfy the request:

PrfF � n0g =
X

bjF (b)�n0

Prfbg (8)

Finally, we �nd the median value of Q(n0) by setting PrfF > n0g = 0:5 and solving for t.
Of course, the number of possible outcomes (and thus the time for this calculation) increases

exponentially with p, the number of running jobs. Thus this is not a feasible approach when there
are many running jobs. But when the number of additional processors required (n0) is small, it is
often the case that there are several jobs running in the system that will single-handedly satisfy
the request when they complete. In this case, the probability that the request will be satis�ed by
time t is dominated by the probability that one of these benefactors will complete before time t.

In other words, the chance that the queue time for n0 processors will exceed time t is approxi-
mately equal to the probability that none of the benefactors will complete before t:

PrfF < n0g �
Y

ijni�n0

1� cdfLjai(t) (9)

The running time of this calculation is linear in p. Of course, it is only approximately correct,
since it ignores the possibility that several small jobs might complete and satisfy the request. Thus,
we expect this predictor to be inaccurate when there are many small jobs running in the system,
few of which can single-handedly handle the request. The next section presents an alternative
predictor that we expect to be more accurate in this case.

3.2 Predictor B: mean

When a job is running, we know that at some time in the future it will complete and free all of
its processors. Given the age of the job, we can use the conditional distribution (Equation 5) to
calculate the probability that it will have completed before time t.

We will approximate this behavior by a model in which processors are a continuous (rather than
discrete) resource that jobs release gradually as they execute. In this case, we imagine that the
conditional cumulative distribution indicates what fraction of a job's processors will be available
at time t.

For example, a job that has been running for 30 minutes might have a 50% chance of completing
in the next hour, releasing all of its processors. As an approximation of this behavior, we predict
that the job will (deterministically) release 50% of its processors within the next hour.

Thus we predict that the number of free processors at time t will be the sum of the processors
released by each job:

F =
X
i

ni � cdfLjai(t) (10)

To estimate the expected (mean) queue time we set F = n0 and solve for t.

3.3 Combining the predictors

Since we expect the two predictors to do well under di�erent circumstances, it is natural to use each
when we expect it to be most accurate. In general, we expect Predictor A to do well when there are
many jobs in the system that can single-handedly satisfy the request (benefactors). When there are

10

few benfactors, we expect Predictor B to be better (especially since, if there are none, we cannot
calculate Predictor A at all). Thus, in our simulations, we use Predictor A when the number of
benefactors is 2 or more, and Predictor B otherwise. The particular value of this threshold does
not a�ect the accuracy of the combined predictor drastically.

4 Simulations

To evaluate the bene�ts of using predicted queue times for processor allocation, we use the models
in the previous section to generate workloads, and then use a simulator to construct schedules for
each workload according to the proposed allocation strategies. We compare these schedules using
several summary statistics as performance metrics.

Our simulations try to capture the daily work cycle that has been observed in several su-
percomputing environments (the Intel iPSC/860 at NASA Ames and the Paragon at SDSC [9]
[23]):

� In the early morning there are few arrivals, system utilization is at its lowest, and queue
lengths are short.

� During the day, the arrival rate exceeds the departure rate and jobs accumulate in queue.
System utilization is highest late in the day.

� In the evening, the arrival rate falls but the utilization stays high as the jobs in queue begin
execution.

To model these variations, we divide each simulated day into two 12-hour phases: during the
\day-time" phase, jobs arrive according to a Poisson process and either begin execution or join
the queue, depending on the state of the system and the current scheduling strategy. During the
\night-time" phase, no new jobs arrive, but the existing jobs continue to run until all queued jobs
have been scheduled.

We choose the day-time arrival rate in order to achieve a speci�ed o�ered load, �. We de�ne
the o�ered load as the total sequential load divided by the processing capacity of the system:
� = � � E[L]=N , where � is the arrival rate (in jobs per second), E[L] is the average sequential
lifetime (271 minutes in our simulations), and N is the number of processors in the system (128
in our simulations). We observe that the number of jobs per day is between 160 (when � = 0:5)
and 320 (when � = 1:0).

5 Results: application-centric

In this section, we simulate a commonly-proposed, system-centric scheduling strategy and show
that this strategy often makes decisions that are contrary to the interests of individual jobs. We
examine how users might subvert such a system, and measure the potential bene�t of doing so.

5.1 AVG: incentive for subversion

Our baseline strategy is AVG, which assigns free processors to queued jobs in �rst-come-�rst-served
order, giving each job no more than A processors, where A is the average parallelism of the job.
Several studies have shown that this strategy performs well for a range of workloads [21] [11] [15]
[22] [4] [6].

11

An important feature of this strategy is that it is work-conserving: if even one processor is free,
the job at the head of the queue will be forced to begin execution immediately. From the system's
point of view, work-conservation is expected to yield high utilization, but from the application's
point of view, it often makes decisions that are contrary to the interests of the users. At the least,
users will object; in many cases, they will subvert the system.

For example, a user might try to avoid long run times by imposing a minimum cluster size for
his jobs. It is probably necessary for a real system to provide such a mechanism, because many jobs
cannot run on small clusters due to memory constraints. The problem is that inated jobs (ones
that wait in queue for more resources than they strictly require) decrease utilization by leaving
processors idle, increase queue times not only for themselves, but also for the other jobs in queue,
and may not even improve their own performance. As a result, the performance of the system
degrades.

In [6] we evaluate a simple policy in which users require that each job allocate at least 40% of its
requested cluster size. The overall result is a 24% increase in average turnaround time. Imposing
larger minimumcluster sizes degrades the performance of the system even more dramatically. This
result suggests that AVG will not perform as well in the presence of self-interested users as it does
in simulation.

5.2 OPT: scheduling with perfect prediction

Our application-centric strategy uses queue time predictions to minimize the turnaround time of
each job. By evaluating each possibility, we �nd the value of n that minimizes Q(n)+R(n), where
Q(n) is the queue time until n processors are available, and R(n) is the run time of the job in n

processors. As in AVG, n is restricted to be no greater than A. In this section we will assume that
Q(n) is known deterministically by oracular prediction, and �nd the maximum bene�t individual
jobs might gain. In the next section we will see how much of this bene�t we can achieve with
realistic predictors.

We ran AVG for 120 simulated days with the o�ered load, �, �xed at 0.75. For each of the
30421 jobs, we found the cluster size that would minimize its turnaround time. Many jobs (63%)
were allocated the maximum cluster size, A processors. We call these jobs spoiled, since they get
everything they want.

Of the remaining jobs, we identi�ed two groups: docile jobs are the ones that do what the
system wants them to do | if they are o�ered fewer than A processors, they run immediately on
the small cluster. Rebels are the jobs that would bene�t by defying the system and waiting for a
larger cluster.

In our simulations, 38% of the non-spoiled jobs (14% of all jobs) should rebel. For each rebel,
we calculate the time savings, which is the di�erence between the job's actual turnaround time
and its best possible turnaround time. The median savings for a rebel is 15 minutes; the average
is 1.6 hours. These are substantial savings, considering that the median duration for all jobs is 3
minutes and the average duration is 1.3 hours. We conclude that using queue time predictions for
processor allocation has great potential to reduce turnaround times.

5.3 PRED: using realistic predictions

Of course, scheduling is easy with the bene�t of an oracle. We would like to know how much time
rebels will save using less accurate predictions about queue times. In this section we will compare
the performance of the optimal strategy to an implementable strategy called PRED. PRED is

12

the same as OPT except that instead of knowing Q(n) deterministically, we estimate it using the
predictors described in Section 3.

Under PRED, a rebel may reconsider its decision after some time and, based on a new set of
predictions, decide to start running. Of course, recomputing predictions incurs overhead; thus, it
is not clear how often jobs should be prompted. In our system, jobs are prompted whenever a new
job arrives in queue and whenever the predicted queue time elapses.

Our metric of performance is total time savings divided by the total number of jobs. OPT
maximizes this time savings per job. We simulated PRED with the same workload, job-for-job,
we used to simulate OPT (120 days, 30421 jobs, � = 0:75). The average time savings per job was
12.8 minutes, compared to the optimal 13.8 minutes. Thus, from the point of view of individual
applications, PRED is within 7% of optimal.

Of the rebels, only a few (8%) end up taking longer than they would if they were docile, and for
these the time lost is small (3.7 minutes on average). For the majority, the bene�t is substantial;
the median time savings is 55 minutes; the average is 2.7 hours2.

5.4 BIAS: bias-corrected prediction

Each time a simulated job uses a prediction to make an allocation decision, we record the
prediction and the outcome. Figure 5a shows a scatterplot of these predicted and actual queue
times. We measure the quality of the predictions by two metrics, accuracy and bias. Accuracy is
the tendency of the predictions and outcomes to be correlated; the coe�cient of correlation (CC)
of the values in Figure 5a is 0:48 (all statistical calculations are performed under a logarithmic
transformation).

Bias is the tendency of the predictions to be consistently too high or too low. The lines in
the �gure, which track the mean and median of each column, show that short predictions (under
ten minutes) are unbiased, but that longer predictions have a strong tendency to be too high. We
can quantify this bias by �tting a least-squares line to the data. For a perfect predictor, the slope
would be 1 and the intercept 0; for our predictors the slope of this line is 0.6 and the intercept 1.7.

Fortunately, if we know that a predictor is biased, and we estimate the parameters of this
bias (based on previous predictions), we can correct the bias by applying a transformation to the
calculated values. In this case, we estimate the intercept (�0) and slope (�1) of the trend line,
and apply the transformation pcorr = p � �1 + �0, where p is the calculated prediction and pcorr
is the modi�ed prediction. Figure 5b shows the e�ect of running the simulator again using this
transformation. The slope of the new trend line is 1.01 and the intercept is -0.01, indicating that
we have almost completely eliminated the bias.

Although we expected to be able to correct bias, we did not expect this transformation to
improve the accuracy of the predictions; the coe�cient of correlation should be invariant under
an a�ne transformation. Surprisingly, bias correction raises CC from 0.48 to 0.59. This e�ect
is possible because past predictions inuence system state, which inuences future predictions;
thus the two scatterplots do not represent the same set of predictions. But we do not know why
unbiased predictions in the past lead to more accurate predictions in the future.

The improvement in bias and accuracy is reected in greater time savings. Under BIAS (PRED
with bias-corrected prediction) the average time savings per job increases from 12.8 minutes to
13.5 minutes, within 2% of optimal. In practice, the disadvantage of BIAS is that it requires us to
record the result of past predictions and estimate the parameters �0 and �1 dynamically.

2PRED's average time savings per rebel is actually better than that of OPT, since PRED chooses fewer, but
more successful, rebels (see Table 1). This anomaly is the reason we chose time savings per job as our metric.

13

a) Raw predictors

Actual vs. predicted queue times

predicted

actual

10s 100s 10m 1hr 6hrs

10s

100s

10m

1hr

6hrs

b) Predictors with bias correction

Actual vs. predicted queue times

predicted

actual

10s 100s 10m 1hr 6hrs

10s

100s

10m

1hr

6hrs

Figure 5: Scatterplot of predicted and actual queue times (log scale). The white line shows the
identity function; i.e. a perfect predictor. The solid line shows the average of the actual queue
times in each column. The broken line shows the median.

14

5.5 HEUR: using only application characteristics

We would like to know whether our predictions are really necessary for allocation, or whether we
can do as well using only application characteristics. Intuitively, we expect that we can identify
good candidates for rebellion by their long lifetimes and high degree of parallelism. Observation
of the optimal policy con�rms this intuition; the average lifetime of rebels is 8 times the average
lifetime of docile jobs.

We propose the following heuristic allocation policy (HEUR): any job with sequential lifetime
greater than Lthresh and parallelism greater than Athresh will hold out for at least some fraction, f ,
of its maximum cluster size, A. The parameters Athresh, Lthresh, and f must be tuned according
to system and workload characteristics.

Like PRED, HEUR requires a form of prompting. In this case, if a job rebels, we calculate its
potential time savings, tsave = R(nfree) � R(fA), where nfree is the number of free processors,
and fA is the number of processors the job is holding out for. If a period of time, ktsave, elapses
before the job begins execution, the job is forced to run on the available processors. The parameter
k, again, must be tuned according to the workload.

By a semi-systematic exploration of parameter-space, we found that the following values max-
imized the performance of HEUR: Lthresh = 0, Athresh = 1, f = 1:0 and k = 0:2. In other words,
all jobs, regardless of their characteristics, should hold out for at least A processors, but they
should not hold out for long. If they use up 20% of their potential time savings waiting in line,
they should concede and start running on the available processors.

Using these parameters, the average time saving per job is 12.8 minutes, which is the same as
PRED. Thus we conclude that a well-tuned heuristic allocation strategy can do as well, from the
application-centric view, as our predictive strategy. In a real system, it may be di�cult to tune the
four parameters; we have observed that their optimal values are di�erent for other loads, system
sizes and workload models.

5.6 Summary of allocation strategies

Table 1: summary of allocation strategies

number average fraction
of rebels time savings of rebels

(% of total) per job who lose

OPT 4244 (14%) 13.8 min. 0%

PRED 2388 (8%) 12.8 8%

BIAS 3089 (10%) 13.5 8%

HEUR 11158 (37%) 12.8 68%

Table 1 summarizes the performance of the four allocation strategies. PRED and BIAS are
more conservative than OPT; that is, they choose fewer rebellious jobs. PRED's conservativism
is clearly a consequence of the tendency of our predictions to be too long. By overestimating
queue times, we discourage jobs from rebelling. But it is not as clear why BIAS, which does not
overestimate, is more conservative than OPT. In any case, both prediction-based strategies do a
good job of selecting successful rebels; only 8% of rebels ended up spending more time in queue
than they save in run time.

15

On the other hand, HEUR is much more agressive than OPT. More than a third of the jobs
rebel, although only for a short time. Of these, the majority (68%) end up wasting time in queue.
Since these losses are small, and the occasional win is big, the average over all jobs is the same as
PRED, but it is not clear whether users would choose a strategy with such a high chance of being
detrimental.

6 Results: system-centric

Until now, we have been considering the e�ect of allocation strategies on individual jobs. Thus in
our simulations we have not allowed jobs to e�ect their allocation decisions; we have only measured
what would happen if they had. Furthermore, when we tuned these strategies, we chose parameters
that were best for individual jobs.

In this section we modify our simulations to implement the proposed strategies and evaluate
their e�ect on the performance of the system as a whole. We use two metrics of system performance:
average turnaround time (over all jobs) and utilization. We de�ne utilization as the average, over
time and processors, of e�ciency. E�ciency is the ratio of speedup to cluster size, S(n)=n. In our
simulations, we can calculate e�ciencies because we know the speedup curves for each job. In real
systems this information is not usually available.

Table 2 shows the results of each allocation strategy, using the same workload as in the previous
section. In each case, we compare the results with the baseline allocation strategy, AVG. Since
the workloads are identical, we can compare them job-by-job and see which jobs do better under
which strategies.

Table 2 : system performance

Average Average
change in turnaround
utilization time
(120 days) (30421 jobs)

AVG | 4795 seconds

OPT +0.1% 5236 (+9%)

PRED +2.4% 4652 (-3%)

BIAS +1.0% 5048 (+5%)

HEUR -5% 6555 (+37%)

The predictive strategies all yield better utilization than AVG. This is surprising, since these
strategies often leave processors idle (which decreases utilization) and allocate larger clusters (which
decreases e�ciency). Thus we expected these strategies to decrease overall utilization.

The reason they do not is that these strategies are better able to avoid L-shaped schedules.
Figure 6 shows two schedules for the same pair of jobs. Under AVG, the second arrival would
be forced to run immediately on the small cluster, which improves utilization in the short term
by reducing the number of idle processors. But after the �rst job quits, many processors are left
idle until the next arrival. Our predictive strategies allow the second job to wait for a larger
cluster, which not only reduces the turnaround time of the second job; it also increases the average
utilization of the system.

16

ru
nn

in
g

jo
b

small cluster, long run time

many idle
processors

P
ro

ce
ss

or
s

time

Schedule under AVG

Schedule with prediction

ru
nn

in
g

jo
b

P
ro

ce
ss

or
s

time

wait

larger
cluster

fewer idle processors

Figure 6: Sample schedules showing how longer queue times and larger cluster sizes can, para-
doxically, improve system utilization. Queue time prediction makes it possible to avoid L-shaped
schedules and thereby reduce the number of idle processors.

Despite this improvement, both OPT and BIAS lead to longer turnaround times, on average,
than AVG. The reason for this degradation is that rebellious jobs impose longer queue times on
the other jobs in queue. By using conservative predictions, PRED reduces the number of rebels
enough that the average turnaround time is actually better than under AVG. HEUR is much more
agressive in its selection of rebels, and the system pays for it. The average turnaround time under
HEUR is 37% longer than under AVG.

Since PRED produces the best results for the system, it is tempting to say that it is the best
choice for a real system. Unfortunately, it does not satisfy our goal, which is to �nd an allocation
strategy that is robust in the presence of self-interested users. In the case of PRED, users would
eventually notice that the predicted queue times were consistently too high; thus, they might apply
bias correction on their own behalf. The result would be performance similar to BIAS.

6.1 Improvements

One way to reduce the impact of rebellion on global performance is to internalize the cost rebels
impose on the jobs behind them. Instead of minimizing the turnaround time of each job, Q(n) +
R(n), the system might minimize the sum of run time and the queue time imposed on all jobs,
qQ(n) + R(n), where q is the number of jobs in queue.

The problem with this approach is that it takes us back where we started; some users will be
forced to accept allocations that are contrary to their immediate interests, and these users will
have incentive to subvert the system.

An alternative, which can be enforced by the system, is lock-in. If a job chooses to rebel, it

17

must declare the number of processors it is holding out for; that is, the value of n that minimizes
the rebel's expected turnaround time. Then, even if more processors become available, the rebel
can allocate only n. We expect this mechanism to reduce the queue time rebels impose on other
jobs, and thereby improve average turnaround time. In our simulations, lock-in reduces the average
turnaround time under BIAS from 5048 seconds to 5011 seconds (still 4:5% longer than AVG).

Another way to mitigate the impact of rebellion is to discourage jobs from holding out for short
gains. We simulate a strategy in which a job only rebels if its predicted time savings are greater
than 20% of its run time. Although this strategy does not strictly minimize expected turnaround
time, it would be preferable to users who are risk-averse. Adding risk aversion to BIAS with lock-in
decreases the average turnaround time to 4783 seconds (marginally lower than under AVG).

Thus, with some modi�cation, BIAS satis�es our design criteria: it allows users to maximize
the performance of their jobs using all the information at their disposal, yet it prevents this local
optimization from degrading the overall performance of the system.

7 Conclusions

� We have proposed an allocation policy that never creates the incentive for users to subvert the
system; thus, we expect it to perform well in the presence of self-interested users. We show
that this application-centric policy yields global performance as good as the best system-
centric policy.

� Using predicted queue times to choose cluster sizes signi�cantly reduces the turnaround time
of individual jobs, even if the prediction is not very accurate. In our simulations, the average
time savings per job is 13.5 minutes (the average job duration is 78 minutes). From the point
of view of individual applications, our predictive allocation strategy is within 2% of optimal.

� We show that it is possible to improve the performance of some jobs using only application
characteristics and ignoring the state of the system, but we observe that this strategy has a
disastrous e�ect on the overall performance of the system.

7.1 Future work

In this paper we have considered a single system size (128 processors), distribution of application
characteristics (see Section 2), and load (� = 0:75). We would like to evaluate the e�ect of each of
these parameters on our results.

Also, we have modeled an environment in which users provide no information to the system
about the run times of their jobs. As a result, our predictions are not very accurate. In the real
systems we have examined, the information provided by users signi�cantly improves the quality of
the predictions [7]. We would like to investigate the e�ect this improvement on our results.

As part of the DOCT project [14] we are in the process of implementing system agents that
provide predicted queue times on space-sharing parallel machines. Users can take advantage of this
information to choose what jobs to run, when to run them, and how many processors to allocate
for each. We expect that this information will improve user satisfaction with these systems, and
hope that, as in our simulations, it will lead to improvement in the overall performance of the
system.

18

References

[1] M. J. Atallah, C. L. Black, D. C. Marinescu, H. J. Siegel, and T. L. Casavant. Models and
algorithms for coscheduling compute-intensive tasks on a network of workstations. Journal of
Parallel and Distributed Computing, 16(4):319{327, Dec 1992.

[2] Francine Berman and Rich Wolski, Principal Investigators. AppLeS Home Page http://www-
cse.ucsd.edu/groups/hpcl/apples/apples.html. University of California at San Diego, 1996.

[3] Francine Berman and Rich Wolski. Scheduling from the perspective of the application. In
Proceedings of the High Perfomance Distributed Computing Conference, August 1996.

[4] Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of application character-
istics and limited preemption for run-to-completion parallel processor scheduling policies. In
Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systems, 1994.

[5] Allen B. Downey. A model for speedup of parallel programs. In preparation, 1996.

[6] Allen B. Downey. A parallel workload model and its implications for processor allocation.
Submitted for publication in SIGMETRICS'97, 1996.

[7] Allen B. Downey. Predicting queue times on space-sharing parallel computers. In 11th Inter-
national Parallel Processing Symposium, April 1997. To appear. Also available as University
of California technical report number CSD-96-906.

[8] Derek L. Eager, John Zahorjan, and Edward L. Lazowska. Speedup versus e�ciency in parallel
systems. IEEE Transactions on Computers, 38(3):408{423, March 1989.

[9] Dror G. Feitelson and Bill Nitzberg. Job characteristics of a production parallel scienti�c
workload on the NASA Ames iPSC/860. In IPPS '95 Workshop on Job Scheduling Strategies
for Parallel Processing, pages 215{227, 1995.

[10] J. Gehring and A Reinefeld. MARS | a framework for minimizing the job execution time in
a metacomputing environment. In Future Generation Computer Systems (FGCS), 1996. To
appear.

[11] Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tripathi. The processor working set and
its use in scheduling multiprocessor systems. IEEE Transactions on Software Engineering,
17(5):443{453, May 1991.

[12] Shikharesh Majumdar, Derek L. Eager, and Richard B. Bunt. Scheduling in multiprogrammed
parallel systems. In Proceedings of the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pages 104{113, 1988.

[13] Rajesh K. Mansharamani and Mark K. Vernon. Comparison of processor allocation policies
for parallel systems. Technical report, University of Wisconsin, December 1993.

[14] Reagan Moore and Richard Klobuchar, Principal Investigators. DOCT Home Page
http://www.sdsc.edu/DOCT. San Diego Supercomputer Center, 1996.

19

[15] Vijay K. Naik, Sanjeev K. Setia, and Mark S. Squillante. Performance analysis of job schedul-
ing policies in parallel supercomputing environments. In Supercomputing '93 Conference Pro-
ceedings, pages 824{833, March 1993.

[16] Eric W. Parsons and Kenneth C. Sevcik. Coordinated allocation of memory and processors
in multiprocessors. In Proceedings of the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pages 57{67, May 1996.

[17] Emilia Rosti, Evgenia Smirni, Lawrence W. Dowdy, Giuseppe Serazzi, and Brian M. Carlson.
Robust partitioning policies of multiprocessor systems. Performance Evaluation, 19(2-3):141{
165, Mar 1994.

[18] Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W. Dowdy. Analysis of non-
work-conserving processor partitioning policies. In IPPS '95 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 101{111, 1995.

[19] Sanjeev K. Setia and Satish K. Tripathi. An analysis of several processor partitioning policies
for parallel computers. Technical Report CS-TR-2684, University of Maryland, May 1991.

[20] Sanjeev K. Setia and Satish K. Tripathi. A comparative analysis of static processor partition-
ing policies for parallel computers. In Proceedings of the Internationsal Workshop on Modeling
and Simulation of Computer and Telecommunications Systems (MASCOTS), January 1993.

[21] Kenneth C. Sevcik. Characterizations of parallelism in applications and their use in scheduling.
Performance Evaluation Review, 17(1):171{180, May 1989.

[22] Evgenia Smirni, Emilia Rosti, Lawrence W. Dowdy, and Giuseppe Serazzi. Evaluation of
multiprocessor allocation policies. Technical report, Vanderbilt University, 1993.

[23] Kurt Windisch, Virginia Lo, Dror Feitelson, Bill Nitzberg, and Reagan Moore. A comparison
of workload traces from two production parallel machines. In 6th Symposium on the Frontiers
of Massively Parallel Computation, 1996.

20

